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mrgsolve is an R package for simulation from hierarchical, ordinary differen-
tial equation (ODE) based models typically employed in drug development.
mrgsolve has been used for a wide variety of model applications, includ-
ing pharmacokinetics (PK), pharmacokinetics/pharmacodynamics (PK/PD),
physiologically-based pharmacokinetic (PBPK) modeling, and quantitative
systems pharmacology. This vignette provides a comprehensive introduction
to using mrgsolve in a single document. While there is more to learn about
mrgsolve, this document will give you a good introduction to the essentials
and some ideas for thinking about how all the pieces fit together. Be sure
to visit https://mrgsolve.org for additional resources to help you learn and
effectively use mrgsolve.
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1 Big picture

To start out this package vignette, I want to give you an overhead view of what it is like
working with mrgsolve. There are a huge number of little details that you might want to
eventually know in order to usemrgsolve effectively; but for now, let’s get a handle on the
big picture of what you need to do to get the simulations you want.

There are 3 (or 4) main simulation workflows that we want to work up to. We can think
about the type of outputs we want and then determine what inputs we’ll need to create
and the functions that need to be called in order to get those outputs back.

First, load the package along with any other helper packages we need for this vignette.

library(mrgsolve)
library(dplyr)

1.1 You need a model

For every workflow, you need a model. In most cases, is coded in a separate file and read
in by mread()

mod <- mread("azithro-fixed.mod")

Building azithro-fixed_mod ... done.

mod

------------ source: azithro-fixed.mod ------------

project: /Users/kyleb/git...olve/vignette
shared object: azithro-fixed.mod-so-c412206deb60
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time: start: 0 end: 240 delta: 0.1
add: <none>

compartments: GUT CENT PER2 PER3 [4]
parameters: TVCL TVV1 TVQ2 TVV2 Q3 V3 KA WT [8]
captures: CP [1]
omega: 2x2
sigma: 1x1

solver: atol: 1e-08 rtol: 1e-08 maxsteps: 20k
------------------------------------------------------

In the above example, we created a file called azithro-fixed.mod (azithromycin popula-
tion PK with fixed effect parameters only) and wrote out the covariate model, differential
equations, etc. into that file. We point mread() at that file to parse, compile and load the
model. More information on using mread() and the model object is found in Section 3.
We’ll start showing you the model syntax in Section 8.

1.2 Single profile

The first and simplest workflow is to generate a single simulated profile from the model.
Thequickestwaywe’ll do this is using themodel object loaded in theprevious section along
with an event object

mod %>%
ev(amt = 250, ii = 24, addl = 4) %>%
mrgsim(end = 144, delta = 0.1) %>%
plot("CP")

time

C
P

0
50

10
0

15
0

20
0

0 50 100 150

The mrgsim() function is called to actually execute the simulation and we’ve introduced
some simulation options (like the simulation end time) by passing those arguments in.
More info on mrgsim() can be found in Section 6.

The event object is a quick way to introduce an intervention (like dose administration) into
your simulation. More information about event objects is provided in Section 4.
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1.3 Population simulation

Whenwe simulate a population, wewant to simulate a collection of individuals (or profiles)
in a single simulation run. Most often, this involves creating an input data set with dosing
or other information for each subject in the population.

In this example, we’ll load another azithromycin population PK model

mod <- mread("azithro.mod")

Building azithro_mod ... done.

Rather than using an event object as we did for the single profile, we make a data set; in
this example, we use expand.ev() to help

set.seed(9876)

data <- expand.evd(amt = 250, WT = runif(10, 50, 100))

data

ID TIME AMT CMT EVID WT
1 1 0 250 1 1 92.33453
2 2 0 250 1 1 68.39476
3 3 0 250 1 1 56.19846
4 4 0 250 1 1 78.43937
5 5 0 250 1 1 71.22273
6 6 0 250 1 1 63.88194
7 7 0 250 1 1 73.15188
8 8 0 250 1 1 80.16205
9 9 0 250 1 1 75.37584
10 10 0 250 1 1 59.11208

In this data set, we see 10 subjects who are differentiated by their different weights (WT).
For this simulation, we are giving every subject a singe 250 mg dose.

set.seed(9876)

mod %>%
data_set(data) %>%
mrgsim(end = 24) %>%
plot("CP")
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This simulation introduces variability not only through the covariate WT but also through
random effects (i.e., ETAs) which are simulated when we call mrgsim().

1.4 Batch simulation

You can also simulate a population (or a batch of subjects) with a data set of parameters
and an event object. This workflow is like the population simulation, but the inputs are
configured in a slightly different way where the population is a set of parameters with a
common intervention, rather than a data set with (possibly) different interventions (or dif-
ferent parameters) for each subject in the population. Going back to the azithro-fixed
model

mod <- mread("azithro-fixed.mod")

Building azithro-fixed_mod ... done.

Rather than creating a data set with doses for everyone, we just create their parameters

set.seed(9876)

data <- expand.idata(WT = runif(10, 50, 100))

data

ID WT
1 1 92.33453
2 2 68.39476
3 3 56.19846
4 4 78.43937
5 5 71.22273
6 6 63.88194
7 7 73.15188
8 8 80.16205
9 9 75.37584
10 10 59.11208
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Here, we have 10 parameter sets which can also be thought of as 10 people. We can pass
this set of parameters as idata, or individual-level data, along with an event object

mod %>%
ev(amt = 250, ii = 24, addl = 4) %>%
idata_set(data) %>%
mrgsim(end = 144) %>%
plot("CP")

time

C
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0

20
0

25
0

0 50 100 150

Here, we get the same output as we got for the population simulation, but a slightly dif-
ferent setup. This setup might be more or less convenient or more or less flexible to use
compared to the population setup. Either way, the approach is up to you and the needs of
your simulation project.

1.5 Replicate simulation

This pattern is just likedata_set, butwedo that in a loop togenerate replicate simulations.
Sometimes we do a simulation like this when we are doing simulation-based model evalu-
ation or maybe we’re simulating across draws from a posterior distribution of parameter
estimates.

This simulation might look something like this (code not evaluated in this vignette)

sim <- function(i, model, data) {
mod %>%
data_set(data) %>%
mrgsim() %>%
mutate(irep = i)

}

out <- lapply(1:1000, sim, model = mod, data = data) %>% bind_rows()

Here, we create a function (sim()) that simulates a data set once and then call that func-
tion repeatedly to get replicate simulated data sets.

7



1.6 The general pattern

So the general pattern to working with mrgsolve is

• Code a model
• Load it with mread()
• Set up your intervention and population
• Simulate with mrgsim()
• Plot or process your output

2 Quick start

To quickly get started with mrgsolve, try using the built in model library like this

mod <- modlib("pk1", delta = 0.1)

out <- mrgsim(mod, events = evd(amt = 100))

out

Model: pk1
Dim: 242 x 5
Time: 0 to 24
ID: 1

ID TIME EV CENT CP
1: 1 0.0 0.00 0.000 0.0000
2: 1 0.0 100.00 0.000 0.0000
3: 1 0.1 90.48 9.492 0.4746
4: 1 0.2 81.87 18.034 0.9017
5: 1 0.3 74.08 25.715 1.2858
6: 1 0.4 67.03 32.619 1.6309
7: 1 0.5 60.65 38.819 1.9409
8: 1 0.6 54.88 44.383 2.2191

plot(out, "CP")

TIME

C
P

0
1

2
3

4

0 5 10 15 20 25
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That was a really simple simulation where we used an event object to initiate a dose into
a one-compartment model. Notice how the plot()method allows us to quickly visualize
what happened in the simulation. See the ?modlib help topic for more models you can
play around with to get comfortable with mrgsolve. Or keep reading to dig into more of
the details.

3 Model object

This chapter introduces the mrgsolve model object. The model object contains all infor-
mation about the model itself, including

• Compartments
• ODE
• Algebraic relationships
• Random effects
• More

The model object is what you use in R work with the model, including

• Query the model
• Run simulations

3.1 mread()

Wesawbefore that you can load amodel fromamodel specification file using the mread()
function. Don’t worry for now what is in that file; we’ll show you how to create it in Sec-
tion 8.

3.1.1 Model file extension

Your model can have any extension. Traditionally, we’ve used the .cpp extension because
a lot of the code in that file is c++. However, we’ve moved away from that in recent years
because code editors like Rstudio see that .cpp extension and think that all the code is
c++; they then format the code inways that aren’twhat youusuallywant. Sousing the.mod
(or .txt) file extension can be helpful just to keep your editor from doing too much.

3.1.2 Syntax to load a model

This section walks you though some of the ways you can use mread() to load a model.

You can provide the complete path to the file

mod <- mread("model/test.mod")

You can provide the file name (first argument) and enclosing directory (as project); this
assumes you are keeping all simulation code in the models directory

mod <- mread("test.mod", project = "model")

This can be a convenient pattern in a larger project because the project argument can be
pulled from the mrgsolve.project R option (see ?options). For example
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options(mrgsolve.project = "model")

mod <- mread("test.mod")

3.1.3 Update the model on load

mrgsolve provides an update()method for changing some settings inside amodel object.
mread() will take in arguments and pass them along to update() so you can make these
changes at the time the model is loaded. For example, we can

• Set the simulation end time to 240
• Set (increase) ODE solver relative tolerance to 1e-5

by passing the appropriate arguments through mread()

mod <- mread("model/test.mod", end = 240, rtol = 1e-5)

3.1.4 Read and cache

Use mread_cache() to build and cache the model on disk.

When you load the model the first time, you’ll see

mod <- mread_cache("test.mod", project = "model")

Building test_mod ... done.

When you load it again, you’ll see

mod <- mread_cache("test.mod", project = "model")

Loading model from cache.

By default, mrgsolve will store the cached model information in the temporary directory
that R sets up every time you start a new R session. This is convenient because you don’t
have to think about what that directory is, but sometimes you want the cached model to
sit in a location that you have a little more control over. Look at the soloc argument to
mread(); this will let you place the cached model information in a stable location.

3.2 modlib()

Use the modlib() function to load a model from an internal model library. These are pre-
codedmodels that canbe sourced fromwithin themrgsolve installationdirectory. They are
a great way to get your hands on different models to experiment with. But note: I rarely
use these for production work; almost always, my production model is more complicated
that what has been coded into these general-purpose library models.

This code will load a 1-compartment PK model
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mod <- modlib("pk1")

So the modlib() function is equivalent to

mod <- mread("pk1", project = modlib())

Check out the modlib() help topic for a more detailed listing of the models

?modlib

3.3 Model overview

You can print mod to the R console and see what’s going on

mod

----------------- source: test.mod -----------------

project: /Users/kyleb/git...ignette/model
shared object: test_mod-so-c41235683d50

time: start: 0 end: 24 delta: 1
add: <none>

compartments: GUT CENT [2]
parameters: CL V TVKA [3]
captures: CP [1]
omega: 2x2
sigma: 0x0

solver: atol: 1e-08 rtol: 1e-08 maxsteps: 20k
------------------------------------------------------

or summarize

summary(mod)

Model: test_mod
- Parameters: [3]
CL, V, TVKA

- Compartments: [2]
GUT, CENT

- Captured: [1]
CP

- Outputs: [3]
GUT, CENT, CP

or see the model code
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see(mod)

Model file: test.mod
$PARAM CL = 1, V = 20, TVKA = 1.2

$OMEGA 0.1 0.2

$PKMODEL cmt = "GUT CENT", depot = TRUE

$MAIN
double KA = TVKA + ETA(1);

$TABLE
capture CP = CENT/V;

3.4 Parameters

Parameters are name=value pairs that are used in your model. You can change the value
of a parameter in several different ways. Understanding how to do this parameter value
update is really important if you want to make interesting simulation outputs.

Query the parameter list with param()

param(mod)

Model parameters (N=3):
name value . name value
CL 1 | V 20
TVKA 1.2 | . .

This output shows you there are 3 parameters in the model

• CL, with nominal value 1
• V, with nominal value 20
• KA, with nominal value 1

Note that each parameter has

• A name(e.g. CL)
• A value (must be numeric or evaluate to a numeric value)

Parameter names can be upper or lower case letters or numbers; the only punctuation
allowed in parameter names is underscore (_).

Parameters are unordered; the order in which you code the parameters makes no differ-
ence to how you are able to work with the model.

See Section 7 for a deeper discussion of model parameters and their central role in gener-
ating simulations to answer questions at hand.
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3.5 Compartments

Models also have compartments. Like parameters, compartments have

• A name
• A value

The same rules hold for compartment names that we discussed for parameter names.

Compartments also have a number; they are numbered in the order in which they are en-
tered.

Query the compartment list with init(). For example, using the model we loaded in the
previous section

init(mod)

Model initial conditions (N=2):
name value . name value
CENT (2) 0 | GUT (1) 0

Notice that each compartment has a number associated with it; this is mainly used for dos-
ing via CMT in your data set. But there is a model syntax that allows you to write a model in
terms of named compartments (e.g. A(2) or F1) as well.

3.6 Random effects

You can see what random effect matrices are available in the model with

revar(mod)

$omega
$...

[,1] [,2]
1: 0.1 0.0
2: 0.0 0.2

$sigma
No matrices found

3.7 Update the model object

We frequently want to change or update the settings in the model object.

Updates can be made through the update()method. For example, use

mod <- update(mod, end = 240, delta = 2)

to change the simulation end time to 240 hours and the output time interval to every 2
hours. This results in a newmodel object with updated settings that will be in place when-
ever you simulate from mod until you make more changes.
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You can also update on model read

mod <- mread("model.mod", end = 240, delta = 2)

or at the time of simulation

out <- mod %>% mrgsim(end = 240, delta = 2)

All of these update mechanisms execute updates to the model object. But only when we
save the results back to mod are the updates persistent in the model.

What else can I update?

• Time

– start, end, delta, add

• Parameters and compartment initial values
• ODE solver settings

– atol, rtol
– hmax, maxsteps, mxhnil, ixpr
– Usually changing rtol, atol, and maybe hmax

• Settings related to steady state

– ss_rtol, ss_atol

• $OMEGA, $SIGMA
• tscale (rescale the output time)
• digits
• outvars (which compartments or derived quantities should appear in the output)

See ?mrgsolve::update for more details.

Parameter update

To update parameters, use param(). More on this in Section 7

mod <- param(mod, CL = 2)

3.8 Write a model object to file

Recall that we use mread() or mread_cache() to read model code from a file into an
object in your R session. mrgsolve also allows you to write the model contents out to a file
again. The code in the new file will be well formatted, but it will be by necessity different
in some ways from the code you originally wrote.

As an example, read test.mod back into R

mod <- mread_cache("model/test.mod")

Loading model from cache.

We can update this model
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mod <- update(mod, end = 240, delta = 6, rtol = 1e-4)
mod <- param(mod, V = 15, CL = 1.5)

We can write this model back to file in a couple of different formats. First, you can write it
in yaml format with mwrite_yaml()

file <- mwrite_yaml(mod, file = "model/test.yaml")

Now themodel code has beenwritten back to the file test.yaml in the model directory.

There is no requirements for file extension; we just chose yaml to match the format.

To read this file back into R, use mread_yaml()

mod2 <- mread_yaml("model/test.yaml")

Building test_yaml_mod ... done.

Now, you have a model you can simulate from again (mod2).

You can also write the model out in native mrgsolve format

mwrite_cpp(mod2, file = "model/test-3.cpp")

Of course, we can read this file back in using mread() and friends.

The important feature of mwrite_* is that it breaks any connections to NONMEM outputs
that might be created through the use of $NMXML or $NMEXT blocks.

For example, model 1005 in modlib() is connected to a NONMEMmodel

modx <- modlib("1005")

Loading required namespace: xml2

Building 1005 ... done.

as.list(modx)$nm_import

[1] "/Users/kyleb/renv/renv/library/R-4.4/aarch64-apple-darwin20/mrgsolve/nonmem/1005/1005.xml"

This mrgsolve model is reading THETA, OMEGA and SIGMA from 1005.xml.

When we write the code to, for example, yaml format, all parameters and matrices are
written into the file as they are, forgetting they came from the NONMEM run.

tmp <- tempfile()
mwrite_yaml(modx, file = tmp)

We can check that this is true by parsing the yaml file
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y <- yaml::yaml.load_file(tmp)

names(y)

[1] "source" "mrgsolve" "format" "version" "model" "prob"
[7] "param" "init" "capture" "omega" "sigma" "envir"
[13] "plugin" "update" "set" "code"

y$param[1:5]

$SEX
[1] 0

$WT
[1] 70

$THETA1
[1] 9.507886

$THETA2
[1] 22.79099

$THETA3
[1] 0.07143366

This functionality can be very helpful when sharing your NONMEM-backed simulation
model written in mrgsolve.

3.9 Advanced

This section shows some advanced methods for interacting with the mrgsolve model ob-
ject.

Get the value of a parameter or setting

mod$CL

[1] 1.5

mod$end

[1] 240

Extract all parameters as a list

as.list(param(mod))
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$CL
[1] 1.5

$V
[1] 15

$TVKA
[1] 1.2

Extract the value of one parameter

mod$CL

[1] 1.5

Extract everything

You can get the model object contents as a plain list

l <- as.list(mod)

4 Event objects

Event objects are quick ways to generate an intervention or a sequence of interventions
to apply to your model. For example, you have a PKmodel and want to implement a series
of doses into the system during the simulation. Event objects function like quick and easy
data sets to accomplish this.

4.1 Create an event object

Use ev() and pass NMTRAN data names in lower case.

For example

ev(amt = 100, ii = 12, addl = 2)

Events:
time amt ii addl cmt evid

1 0 100 12 2 1 1

You can pass

• time time of the event
• evid event ID

– 1 for dose
– 2 for other type
– 3 for reset
– 4 for dose and reset
– 8 for replace
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• amt dose amount
• cmt compartment for the intervention

– usually the compartment number
– can be character compartment name

• ii inter-dose interval
• addl additional doses (or events)

– total alternative for total number of doses

• ss advance to steady-state?

– 0 don’t advance to steady-state
– 1 advance to steady-state
– 2 irregular steady-state

• rate give the dose zero-order with this rate

– tinf alternative for infusion time

• other name=value items that youwould like to appear in the data set underlying the
simulation

See ?ev for additional details.

4.2 Invoke event object

There are several ways to create an invoke event objects.

4.2.1 Inline

When the event is simple and can be expressed in a single line, you can pipe the model
object to ev() and then simulate.

mod <- house(outvars = "GUT,CP,RESP", end = 24)

mod %>% ev(amt = 100) %>% mrgsim() %>% plot()
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This is a common workflow when exploring a model and an intervention.
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4.2.2 As object

You can also save the event object and pass it into the pipeline as we did before with the
inline setup.

e <- ev(amt = 100)

mod %>% ev(e) %>% mrgsim() %>% plot()

Invoking the event object this way is a good idea when you want to create an intervention
and apply it to several different simulation scenarios in the same script.

Alternatively, you can pass it in as the events argument for mrgsim().

mod %>% mrgsim(events = e) %>% plot()

This is functionally the same as passing the (saved) event object into the pipeline via
ev().

4.3 Combining event objects

We can create more complex interventions from several, simpler event objects. mrgsolve
provides an interface with helper functions to facilitate this.

4.3.1 Simple combination

Use the c() operator to concatenate several event objects into a single event object.

For 100 mg loading dose followed by 50 mg daily x6

load <- ev(amt = 100)

maintenance <- ev(time = 24, amt = 50, ii = 24, addl = 5)

dose <- c(load, maintenance)

dose

Events:
time amt cmt evid ii addl

1 0 100 1 1 0 0
2 24 50 1 1 24 5

The final event object has all the simpler event object smashed together, with nomodifica-
tion.

4.3.2 Sequence

We can make this simpler by putting these in a sequence using the seq() generic. Here is
100 mg daily for a week, followed by 50 mg daily for the rest of the month
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a <- ev(amt = 100, ii = 24, total = 7)
b <- ev(amt = 50, ii = 24, total = 21)

seq(a, b)

Events:
time amt ii addl cmt evid

1 0 100 24 6 1 1
2 168 50 24 20 1 1

The output shows that the b event was automatically timed to start once all of the doses
from the a event were given.

You can also put awaiting period in between event objects in a sequence; towait for 7 days
between a and b from the example above

seq(a, wait = 24*7, b)

Events:
time amt ii addl cmt evid

1 0 100 24 6 1 1
2 336 50 24 20 1 1

Now, b starts one week after a ends.

4.3.3 Expand into multiple subjects

We can take any event object and replicate it into several subjects with the ev_rep() func-
tion.

seq(a,b)

Events:
time amt ii addl cmt evid

1 0 100 24 6 1 1
2 168 50 24 20 1 1

seq(a,b) %>% ev_rep(1:3)

ID time amt ii addl cmt evid
1 1 0 100 24 6 1 1
2 1 168 50 24 20 1 1
3 2 0 100 24 6 1 1
4 2 168 50 24 20 1 1
5 3 0 100 24 6 1 1
6 3 168 50 24 20 1 1
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4.3.4 Combine into a data set

Use as_data_setwith ev_rep() to create a single data set

c <- seq(a,b)

as_data_set(
a %>% ev_rep(1:2),
b %>% ev_rep(1:2),
c %>% ev_rep(1:2)

)

ID time amt ii addl cmt evid
1 1 0 100 24 6 1 1
2 2 0 100 24 6 1 1
3 3 0 50 24 20 1 1
4 4 0 50 24 20 1 1
5 5 0 100 24 6 1 1
6 5 168 50 24 20 1 1
7 6 0 100 24 6 1 1
8 6 168 50 24 20 1 1

This example gives us two subjects receiving 100 mg for a week, two subjects receiving 50
mg for 3 weeks, and two subjects receiving 100 mg for a week followed by 50 mg for 3
weeks.

4.4 Modifying event objects

You can use a selection of the tidyverse to modify event objects. For example,

single <- ev(amt = 100)

ss <- mutate(single, ii = 24, ss = 1)

ss

Events:
time amt ii ss cmt evid

1 0 100 24 1 1 1

Available tidyverse verbs for working on event objects include

• mutate()
• select()
• filter()

4.5 Column name case

By default, event objects have lower case names when they are rendered to a data frame
or a data set
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ev(amt = 100) %>% as.data.frame()

time amt cmt evid
1 0 100 1 1

ev(amt = 100) %>% as_data_set()

ID time amt cmt evid
1 1 0 100 1 1

You can request upper case names by using the evd() constructor

evd(amt = 100) %>% as.data.frame()

TIME AMT CMT EVID
1 0 100 1 1

These are the names you will see in the rendered data set and in the simulated output.
Equivalent behavior is seen with

evd_expand(amt = 100)
expand.evd(amt = 100)

Note that, when working with event objects, always refer to lower case names

e <- evd(amt = 100)
e <- mutate(e, ss = 1)
as.data.frame(e)

TIME AMT SS CMT EVID
1 0 100 1 1 1

You can change the case of any event object to upper case (uctran()) or to lower case
(lctran())

evd(amt = 100) %>% as.data.frame() %>% lctran()

time amt cmt evid
1 0 100 1 1

In this example, we created an event object using evd() and then immediately requested
lower case names. This step can also be performed on a raw data frame as well.

4.6 Rx specification

This is an alternate syntax letting you create event objects the same way you might write
out a prescription.
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ev_rx("100 mg x1 then 50 q12h x 10 at 24")

Events:
time amt ii addl cmt evid

1 0 100 0 0 1 1
2 0 50 12 9 1 1

This syntax will cover many common dosing scenarios. But more complicated scenarios
might require creating events as usualwithev() and then combining as described above.

5 Data sets

A “data set” is just a data framewith time, dose, and covariate information for one or more
subjects in a population. You can make data frame any way you want, as long as the result
meets a couple of requirements. That said, mrgsolve contains some convenient functions
to make it easier to create these data frames. A data set is a more general form of the
event objects you read about in Section 4, so it might help to review that section now if
you haven’t already.

5.1 Requirements

There are some requirements for input data sets.

• Only numeric data can get passed into a problem; mrgsolve will quietly remove any
non-numeric columns before simulating

• Like event objects, NMTRAN data columns can be in upper or lower case, but not
both (pick AMT/CMT/TIME or amt/cmt/time, not AMT/cmt/TIME)

• Also like event objects, you can switch between upper and lower case naming with
lctran() and uctran()

• Must contain the columns ID, TIME/time, CMT/cmt, EVID/evid

• If you have a column with the same name as a parameter in your model, that column
cannot contain missing values (NA; see Section 7)

• mrgsolve recognizes a “new” ID in the data set when the value of ID changes from
record to record; however, we recommend using unique ID numbers for subjects in
a data set

5.2 Connection with event objects

There is a natural connection between event objects and data sets: wemade event objects
to work the way they do so it would be easy to create data sets from them. So, if I have an
event object specifying only a single dose

e <- evd(amt = 100)
e
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Events Data:
time amt cmt evid

1 0 100 1 1

we can render that into a data set and it will be configured to meet all the requirements

data <- as_data_set(e)
data

ID TIME AMT CMT EVID
1 1 0 100 1 1

Here, I didn’t specify some required items (like TIME), but mrgsolve filled them in with
something sensible.

Notice that, in this example, e is an event object

class(e)

[1] "ev"
attr(,"package")
[1] "mrgsolve"

but data is just a plain old data frame

class(data)

[1] "data.frame"

5.3 Multiple subjects in a data set

Data sets commonly contain information for more than one subject. There is no practical
limit to the complexity you can code into the data set for any given individual: one subject
might have a single dosewhereas another subjectmayhavemanydoses; doses canbegiven
by different routes; doses may or may not be at steady state etc.

For example, it’s not a problem to have thismix up of dosing scenarios in a single data set:

ID TIME AMT RATE II SS ADDL CMT EVID
1 1 0 100 0 0 0 0 1 1
2 2 0 100 0 0 0 0 1 1
3 3 0 100 0 0 0 0 1 1
4 4 0 200 50 24 0 3 1 1
5 5 0 50 0 12 1 3 1 1
6 5 48 100 0 24 0 2 1 1
7 5 120 200 0 48 0 2 1 1
8 6 0 50 0 12 1 3 1 1
9 6 48 100 0 24 0 2 1 1
10 6 120 200 0 48 0 2 1 1
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5.4 Creating data sets

mrgsolve provides some convenience functions you can use; we’ve found them helpful
when certain input data sets are needed.

5.4.1 ev_rep()

One common way to make a data set is to replicate an event object. We can take a very
simple event object

e <- ev(amt = 100)

and replicate it to create several subjects with that dose. To create 3 subjects, call

ev_rep(e, 1:3)

ID time amt cmt evid
1 1 0 100 1 1
2 2 0 100 1 1
3 3 0 100 1 1

Notice that ev_rep() converts the event object into a data frame / data set. This function
can be convenient when the input event object is complicated like this

e1 <- evd(amt = 100, ii = 24, addl = 5)
e2 <- evd(amt = 200, ii = 12, addl = 6)
e3 <- evd(amt = 50, rate = 25)

e <- ev_seq(e1, e2, e3)
e

Events Data:
time amt rate ii addl cmt evid

1 0 100 0 24 5 1 1
2 144 200 0 12 6 1 1
3 228 50 25 0 0 1 1

It’s easy to replicate this into a data set of 3 (or 300) subjects

ev_rep(e, 1:3)

ID TIME AMT RATE II ADDL CMT EVID
1 1 0 100 0 24 5 1 1
2 1 144 200 0 12 6 1 1
3 1 228 50 25 0 0 1 1
4 2 0 100 0 24 5 1 1
5 2 144 200 0 12 6 1 1
6 2 228 50 25 0 0 1 1
7 3 0 100 0 24 5 1 1
8 3 144 200 0 12 6 1 1
9 3 228 50 25 0 0 1 1
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5.4.2 as_data_set()

Alternatively, we can use ev_rep() to replicate each event object and then combine them
all into a single data frame with as_data_set()

as_data_set(ev_rep(e1, 1:2), ev_rep(e, 1:2))

ID TIME AMT RATE II ADDL CMT EVID
1 1 0 100 0 24 5 1 1
2 2 0 100 0 24 5 1 1
3 3 0 100 0 24 5 1 1
4 3 144 200 0 12 6 1 1
5 3 228 50 25 0 0 1 1
6 4 0 100 0 24 5 1 1
7 4 144 200 0 12 6 1 1
8 4 228 50 25 0 0 1 1

as_data_set() combines these event objects together and ensures there are unique val-
ues for each IDwhile maintain the complexity within each subject.

5.4.3 ev_expand()

The ev_expand() function will create a single data frame / data set formany subjects, but
each subject has a single dosing record. The _expand part of the function name indicates
that we create all combinations of inputs. For example, we can have 3 individuals at each
of 2 doses

ev_expand(ID = 1:3, AMT = c(200, 400))

ID time amt cmt evid AMT
1 1 0 0 1 1 200
2 2 0 0 1 1 200
3 3 0 0 1 1 200
4 4 0 0 1 1 400
5 5 0 0 1 1 400
6 6 0 0 1 1 400

Notice thatID runs from1 to6andeachID appears only onone row. Youmight see another
function called expand.ev(); it does the same thing, but is named to mimic its base R
cousin called expand.grid().

5.4.4 See the user guide

See the mrgsolve user guide for more functions you can use to create interesting input
data sets. But remember that you don’t have to use our convenience functions; you might
be better off coding your own to get the inputs you need for your simulation.
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5.5 What about observation records?

You’ll notice our input data sets only include dosing records. When this is the case, mrg-
solve will fill in the observation records for you according to the internal simulation time
grid maintained in the model object (Section 3.7). You can put observation records into
the data set and get exactly the sampling scheme youwant for each subject; this is howwe
simulate from clinical data sets (e.g. those you might use in model development). So this
is possible and youmight do it. But most of the time when you are simulating de novo, you
should let mrgsolve fill in the observation records. More on this in the user guide.

5.6 Invoking data sets

Once you have a model your data set is created, you can pass it into a simulation pipeline
with the data_set() function. Simulating from the data set we showed in Section 5.3

mod <- modlib("popex", delta = 0.1, end = 300)

Building popex ... done.

set.seed(2468)
mod %>%
data_set(data) %>%
mrgsim(recsort = 3) %>%
plot(IPRED ~ time|factor(ID))
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Alternatively, you can just pass the data set to mrgsim()

mod %>% mrgsim(data = data)
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6 Simulation and outputs

This section discusses

• Simulation from a model object
• Dealing with simulated output

6.1 mrgsim()

Use the mrgsim() function to actually run the simulation. We always pass in the model
object as the first argument.

mod <- modlib("pk1") %>% ev(amt = 100)

mrgsim(mod)

Model: pk1
Dim: 242 x 5
Time: 0 to 24
ID: 1

ID time EV CENT CP
1: 1 0.0 0.00 0.000 0.0000
2: 1 0.0 100.00 0.000 0.0000
3: 1 0.1 90.48 9.492 0.4746
4: 1 0.2 81.87 18.034 0.9017
5: 1 0.3 74.08 25.715 1.2858
6: 1 0.4 67.03 32.619 1.6309
7: 1 0.5 60.65 38.819 1.9409
8: 1 0.6 54.88 44.383 2.2191

Alternatively, we can execute the simulation by passing themodel object inwith the pipe

mod %>% mrgsim() %>% plot()
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6.1.1 Update

The mrgsim() signature contains ... which are passed to update(). Use this mechanism
to customize your simulation or the output on the fly

mod %>% mrgsim(outvars = "CP", end = 72, delta = 0.1) %>% plot()
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In this example, we selected the output variable (CP), ran the simulation to 72 hours (end
= 72) and asked for a finer output time grid (delta = 0.1).

6.1.2 Options

There are some options that can only be set when you call mrgsim(). These are function
arguments; you can see them at ?mrgsim.

• carry_out: numeric data columns to copy into the simulated output
• recover: like carry_out but works with any type
• output: pass "df" to get output as a regular data frame
• obsonly: don’t return dosing records in the simulated output
• etasrc: should ETAs be simulated? or scraped from the data set
• recsort: how doses and observations having the same time are ordered
• tad: insert time after dose into the output
• ss_n and ss_fixed: settings for finding steady state
• nocb: next observation carry backward; set to FALSE for locf

6.1.3 Variants

Inputs

There are mrgsim() variants which are specific to the types of inputs

• mrgsim_e() - just an event object
• mrgsim_d() - just a data set
• mrgsim_ei() - event + idata set
• mrgsim_di() - data set + idata set
• mrgsim_i() - just idata set
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Outputs

You can also call mrgsim_df(), which is awrapper for mrgsim() that always returns a data
frame.

Quick

Call mrgsim_q() for a quick turnaround simulation, with minimal overhead (and features).
This is only really useful when you are simulating repeatedly, many 100s or 1000s of times
or more … like when estimating parameters or doing optimal design. These functions will
notmake a single simulation runmuch faster and theywon’t turn a long-running simulation
into a short-running simulation.

6.2 Simulated output

mrgsim() returns an object with class mrgsims; this is essentially a data frame but with
some extra features.

out <- mrgsim(mod)

class(out)

[1] "mrgsims"
attr(,"package")
[1] "mrgsolve"

head(out)

ID time EV CENT CP
1 1 0.0 0.00000 0.000000 0.0000000
2 1 0.0 100.00000 0.000000 0.0000000
3 1 0.1 90.48374 9.492112 0.4746056
4 1 0.2 81.87308 18.033587 0.9016794
5 1 0.3 74.08182 25.715128 1.2857564
6 1 0.4 67.03200 32.618803 1.6309401

summary(out)

ID time EV CENT
Min. :1 Min. : 0.000 Min. : 0.00000 Min. : 0.00
1st Qu.:1 1st Qu.: 5.925 1st Qu.: 0.00000 1st Qu.:41.38
Median :1 Median :11.950 Median : 0.00059 Median :55.09
Mean :1 Mean :11.950 Mean : 4.34229 Mean :56.50
3rd Qu.:1 3rd Qu.:17.975 3rd Qu.: 0.24198 3rd Qu.:72.26
Max. :1 Max. :24.000 Max. :100.00000 Max. :85.41

CP
Min. :0.000
1st Qu.:2.069
Median :2.754
Mean :2.825
3rd Qu.:3.613
Max. :4.270
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6.2.1 Output scope

The first column in the simulated output is always ID. The second column in the output is
always time (or TIME).

By default, you get simulated values in all compartments and for every derived output at
every time

head(out)

ID time EV CENT CP
1 1 0.0 0.00000 0.000000 0.0000000
2 1 0.0 100.00000 0.000000 0.0000000
3 1 0.1 90.48374 9.492112 0.4746056
4 1 0.2 81.87308 18.033587 0.9016794
5 1 0.3 74.08182 25.715128 1.2857564
6 1 0.4 67.03200 32.618803 1.6309401

• EV and CENT are compartments
• CP is a derived variable (CENT/V)

We can use the outvars() function to look at what compartments and derived variables
will come back in the simulation

outvars(mod)

$cmt
[1] "EV" "CENT"

$capture
[1] "CP"

You can control which compartments and derived outputs are returned when you do a sim-
ulation run. This is a really important feature when the simulations become very large: lim-
iting the outputs to those you actually need canmake the difference between a simulation
that fits within the available memory and one that doesn’t.

To request specific outputs at simulation time, set outvars in the model object. In this
example, we make the selection on the fly

mod %>%
update(outvars = "CP") %>%
mrgsim()

Model: pk1
Dim: 242 x 3
Time: 0 to 24
ID: 1

ID time CP
1: 1 0.0 0.0000
2: 1 0.0 0.0000
3: 1 0.1 0.4746
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4: 1 0.2 0.9017
5: 1 0.3 1.2858
6: 1 0.4 1.6309
7: 1 0.5 1.9409
8: 1 0.6 2.2191

Alternatively, we can make the change persistent

mod2 <- update(mod, outvars = "CP")

outvars(mod2)

$cmt
character(0)

$capture
[1] "CP"

6.2.2 Copy inputs into output

Input data items can be copied into the simulated output without passing through the
model c++ code itself.

For most applications, use the recover argument to mrgsim().

data <- expand.ev(amt = c(100, 300))

data <- mutate(
data,
dose = amt,
arm = case_match(
dose,
100 ~ "100 mg x1",
300 ~ "300 mg x1"

)
)

out <- mrgsim(mod, data, recover = "dose, arm", output = "df")

count(out, dose, arm)

dose arm n
1 100 100 mg x1 242
2 300 300 mg x1 242

This will let you copy inputs of any type into the output (for example, character or factor
data).

If you just want to get numeric inputs into the output, use carry_out
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data <- expand.ev(amt = c(100, 300)) %>% mutate(dose = amt)

out <- mrgsim(mod, data, carry_out = "dose", output = "df")

count(out, dose)

dose n
1 100 242
2 300 242

6.3 Working with mrgsims object

The mrgsims object can be convenient to work with when the output is small.

mod <- modlib("pk1", delta = 0.1)

Loading model from cache.

out <- mrgsim(mod, ev(amt = 100))

out

Model: pk1
Dim: 242 x 5
Time: 0 to 24
ID: 1

ID time EV CENT CP
1: 1 0.0 0.00 0.000 0.0000
2: 1 0.0 100.00 0.000 0.0000
3: 1 0.1 90.48 9.492 0.4746
4: 1 0.2 81.87 18.034 0.9017
5: 1 0.3 74.08 25.715 1.2858
6: 1 0.4 67.03 32.619 1.6309
7: 1 0.5 60.65 38.819 1.9409
8: 1 0.6 54.88 44.383 2.2191

6.3.1 Plot

The main benefit from using this object is the ability to easily make plots to see what hap-
pened in the simulation. You can plot a single output

plot(out, CP ~ time)
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plot(out, "CP CENT")
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6.3.2 Filter

Use filter_sims() to limit the rows that are retained in the simulated output

out2 <- filter_sims(out, time <= 5)

plot(out2)
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6.3.3 Mutate

Use mutate_sims() to alter the columns in the simulated output

mutate_sims(out, week = time/168)

Model: pk1
Dim: 242 x 6
Time: 0 to 24
ID: 1

ID time EV CENT CP week
1: 1 0.0 0.00 0.000 0.0000 0.0000000
2: 1 0.0 100.00 0.000 0.0000 0.0000000
3: 1 0.1 90.48 9.492 0.4746 0.0005952
4: 1 0.2 81.87 18.034 0.9017 0.0011905
5: 1 0.3 74.08 25.715 1.2858 0.0017857
6: 1 0.4 67.03 32.619 1.6309 0.0023810
7: 1 0.5 60.65 38.819 1.9409 0.0029762
8: 1 0.6 54.88 44.383 2.2191 0.0035714

6.4 Coerce output

When output is big, the methods mentioned above are less likely to be useful: what we
reallywant is just a simple data frame towork on. In this case, coerce outputs to data.frame
or tibble

df <- as.data.frame(out)
df <- as_tibble(out)
head(df)

# A tibble: 6 x 5
ID time EV CENT CP

<dbl> <dbl> <dbl> <dbl> <dbl>
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1 1 0 0 0 0
2 1 0 100 0 0
3 1 0.1 90.5 9.49 0.475
4 1 0.2 81.9 18.0 0.902
5 1 0.3 74.1 25.7 1.29
6 1 0.4 67.0 32.6 1.63

Once the output is coerced to data frame, it is like any other R data frame.

Remember that you can get a data frame directly back from mrgsim() with the output
argument

mrgsim(mod, ev(amt = 100), output = "df") %>% class()

[1] "data.frame"

This is what you’ll want to do most of the time when doing larger simulations.

6.4.1 dplyr verbs

You can pipe simulated output directly to several dplyr verbs, for example filter() or
mutate().

mod %>% mrgsim(ev(amt = 100)) %>% mutate(rep = 1)

# A tibble: 242 x 6
ID time EV CENT CP rep

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0 0 0 0 1
2 1 0 100 0 0 1
3 1 0.1 90.5 9.49 0.475 1
4 1 0.2 81.9 18.0 0.902 1
5 1 0.3 74.1 25.7 1.29 1
6 1 0.4 67.0 32.6 1.63 1
7 1 0.5 60.7 38.8 1.94 1
8 1 0.6 54.9 44.4 2.22 1
9 1 0.7 49.7 49.4 2.47 1
10 1 0.8 44.9 53.8 2.69 1
# i 232 more rows

This will first coerce the output object to a data frame and then continue to work on the
simulated data according to the functions in the pipeline.

Other verbs you can use on an mrgsims object include

• group_by()
• mutate()
• filter()
• summarise()
• select()
• slice()
• pull()
• distinct()
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7 Model parameters

Model parameters are name / value pairs that are used inside your model, but they can be
varied outside the model.

Understanding how mrgsolve handles model “parameters” particularly important for gen-
erating interesting and robust simulations.

Big picture

• mrgsolvemaintains a parameter list, including parameter names and values

– The parameter list is set at the time the model is compiled; names and number
of parameters cannot be changed after compile time

– This list is used by default if nothing else is done
– The parameter values in this list can be updated

• mrgsolve will check input data sets for columns which have the same name as a
parameter

– When a match is made between data set and parameter list, mrgsolvewill up-
date the value based on what is passed on the data

– Parameters in idata are checked (and parameter list updated) first; after that,
the data set is checked (and parameter list updated)

7.1 Coding model parameters

Traditionally, we’ve used the $PARAM block to set parameter names and values

$PARAM
WT = 70, SEX = 0, EGFR = 100

New inmrgsolve 1.2.0, you can use the $INPUT block. This is another way to specify param-
eters, but they will have a special tag on them that we can use later.

$INPUT
WT = 70, SEX = 0, EGFR = 100

It’s best if you can set these to sensible values; this is usually the reference value in your
covariate model or some other value that gives you a sensible default output.

7.2 Updating parameter values

You can’t change the names or number of parameters after you compile themodel, but you
can change the values. You can update parameters either

• prior to simulation or
• during simulation

We will illustrate with this model

mod <- mread("parameters.mod")

Building parameters_mod ... done.
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param(mod)

Model parameters (N=8):
name value . name value
EGFR 100 | THETA3 0.262
SEX 0 | THETA4 0.331
THETA1 0 | THETA5 -0.211
THETA2 3 | WT 70

There parameters are:

• WT
• SEX
• EGFR
• THETA1… THETA5

7.2.1 Update prior to simulation

Use param() to update the model object. You can do this in one of two ways.

7.2.1.1 Update with name=value The first way is to pass the new value with the param-
eter name you want to change. To change WT

mod$WT

[1] 70

mod <- param(mod, WT = 80)

mod$WT

[1] 80

And when we simulate,

mrgsim_df(mod) %>% count(WT)

WT n
1 80 25

You can also do this via update()

mod <- update(mod, param = list(WT = 60))

mod$WT
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[1] 60

Remember that mrgsim() passes to update() so you can do the same thing with

out <- mrgsim(mod, param = list(WT = 70))

This will generate simulated output with WT set to 70.

7.2.2 Update with object

If you have a named object, you can pass that in to the update as well. For example, pass
in a named list

p <- list(WT = 70.2, FOO = 1)

mod <- param(mod, p)

mod$WT

[1] 70.2

Or a data frame

data <- data.frame(WT = c(70, 80.1), BAR = 2)

mod <- param(mod, data[2,])

mod$WT

[1] 80.1

7.3 Update during simulation

In this approach, we’ll add a columns to our input data set with the same names as our
parameters and let mrgsolve pick up the new values. To illustrate, load a data set from
which to simulate

data <- read.csv("parameters-data.csv")
data

ID TIME AMT CMT WT SEX EGFR EVID
1 1 0 100 1 60 0 60 1
2 2 0 100 1 70 0 60 1
3 3 0 100 1 80 0 60 1

In this data set, subjects 1, 2, and 3 have different (increasing) weight; all subjects have
SEX=0 and EGFR=60. When we pass this data frame for simulation and plot
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out <-
mod %>%
data_set(data) %>%
zero_re() %>%
mrgsim(delta = 0.1, end = 6)

plot(out, "WT,CP")
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All of this only works if the names in the data set match up with the names in the model.

7.4 Check if the names match

Recall that we coded the model covariates using $INPUT, rather than $PARAM? We can see
that these parameters have this special tag

param_tags(mod)

name tag
1 WT input
2 SEX input
3 EGFR input

They have the input tag, which means we expect to find them on the data set when we
ask. We can check this data set against the parameters in the model

check_data_names(data, mod)

Found all expected parameter names in `data`.

Now, modify the data set so it has eGFR rather than EGFR
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data2 <- rename(data, eGFR = EGFR)

check_data_names(data2, mod)

Warning: Could not find the following parameter names in `data`:
* EGFR (input)
i Please check names in `data` against names in the parameter list.

See the mode argument to check_data_names(); you can warn or inform the user in case
parameter names don’t look right, or you can issue an error.

8 Model Specification

This chapter gives a broad overview of mrgsolve model specification syntax. We’ll start by
coding up a pharmacokinetic model. The model will be very simple to start, letting us get
some concepts in place. Later on, we’ll do more complicated model syntax.

The model parameters are

• CL
• V
• KA

The model compartments are

• CENT
• DEPOT

8.1 Model specification blocks

Model components are coded into blocks, which are delineated by a specific block syntax.
You have a couple of options

NONMEM style

These start with $ and then the block name ($PK)
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Bracket style

Put the block name in brackets ([ ERROR ])

Upper or lower case

You can use either:

• $error
• [ pk ]
• [ DES ]

etc … they all work.

8.1.1 Syntax

The “type” of code you write will vary from block to block. Sometimes it is an R-like syntax
and sometimes it is c++ code.

Don’t worry if you don’t know c++! We have taken a lot of the complexity out and with a
handful of exceptions, the code should be pretty natural and similar to what you write in
R.

8.2 Base model blocks

8.2.1 Parameters

Use the $PARAM block header.

$PARAM
CL = 1, V = 20, KA = 1.1

Parameters have a name and a value, separated by =.

Parameter names can be upper or lower case. If youwant punctuation, use underscore _.

Parameter values must evaluate to a numeric value.

Parameters can’t be functions of other parameters when writing the $PARAM block. But
there is a place where you can do this …we’ll see this later on.

Multiple parameters can go on one line, but separate by comma.

8.2.2 Read it in with mread()

Point mread() at your model file to read it in and see if it compiles.

mod <- mread("simple.mod")

Building simple_mod ... done.

We suggest writing the model in small sections, interactively checking to see if the model
compiles. When you find syntax mistakes (youwill find them), they will be easier to fix this
way.
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8.3 Compartments

$PARAM
CL = 1, V = 20, KA = 1.1

$CMT DEPOT CENT

Compartments are named

• Upper or lower case
• Punctuation use _

Order doesn’t matter, but consider listing your default dosing compartment first. This is a
convenient pattern to keep so you can just dose into compartment 1 when setting up your
data set or event object.

8.4 Differential equations

Now, we’ll write ODE using $DES (or $ODE) block.

$PARAM
CL = 1, V = 20, KA = 1.1

$CMT DEPOT CENT

$DES
dxdt_DEPOT = -KA * DEPOT;
dxdt_CENT = KA * DEPOT - (CL/V)*CENT;

Left hand side is dxdt_<compartment name>.

Right hand side can reference

• Compartments
• Parameters
• Other quantities derived in $DES or $PK
• Other internal variables

Unlike $PARAM and $CMT, this is c++ code; you can include any valid c++ statement. Also,
because this is c++, each line or statement should end in semi-color (;).

8.5 Derived outputs

Like NONMEM, derived can be calculated in the $ERROR block.

$PARAM
CL = 1, V = 20, KA = 1.1

$CMT DEPOT CENT

$DES
dxdt_DEPOT = -KA * DEPOT;
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dxdt_CENT = KA * DEPOT - (CL/V)*CENT;

$ERROR
double CP = CENT/V;

Like $DES, this block must be valid c++ code.

Here we have created a new variable called CP, which is the amount in the central compart-
ment divided by the central volume of distribution.

When we create a new variable, we must declare its type. Use double for a floating point
number.

8.6 Capture outputs into the simulated data

mrgsolve has a $CAPTUREblock thatworks likeNONMEM’s $TABLE. Just list the names you
want copied into the output.

$PARAM
CL = 1, V = 20, KA = 1.1

$CMT DEPOT CENT

$DES
dxdt_DEPOT = -KA * DEPOT;
dxdt_CENT = KA * DEPOT - (CL/V)*CENT;

$ERROR
double CP = CENT/V;

$CAPTURE CP

Rather than putting stuff in $CAPTURE, try declaring with type capture

$ERROR
capture CP = CENT/V;

capture is identical to typedouble, but tellsmrgsolve to include this item in the simulated
output.

A little-use feature is renaming items in $CAPTURE

$ERROR
double DV = CENT/V;

$CAPTURE CP = DV

The syntax is <new-name> = <old-name>.
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8.7 Covariate model

Like NONMEM, we can use $PK (or $MAIN) to code the covariate model, random effects, F,
D, R, and ALAG, and initialize compartments.

$PK

double CL = TVCL * pow(WT/70, 0.75) * exp(ETA(1));

• Any valid c++ code is allowed
• Each line (statement) should end in semi-colon ;

8.8 C++ examples

You can find all sorts of help with c++ syntax on the web. Here are a few common bits of
c++ code that you might need in your model.

if(a == 2) b = 2;
if(b <= 2) {
c=3;

} else {
c=4;

}
d = a==2 ? 50 : 100;
double d = pow(base,exponent);
double e = exp(3);
double f = fabs(-4);
double g = sqrt(5);
double h = log(6);
double i = log10(7);
double j = floor(4.2);
double k = ceil(4.2);

8.8.1 Integer division

Be careful of dividing two integers; it’s usually not what you want to do. When people get
bit by this, it’s usually when they divide one integer literal by another integer literal in their
code. For example, we might think the following should evaluate to 0.75

double result = 3/4; # 0

but it doesn’t. Here, result will evaluate to 0 because the c++ compiler will do integer
division between the 3 and the 4 and you’ll get 0.

It is good to get in the habit of putting .0 behind whole numbers.

double result = 3.0/4.0; # 0.75

Of course, youmight really want to divide two integers at some point; but for now, please
mind this “feature” of c++when writing your code.
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8.9 Random effects

There are timeswhen youwill need to code thismanually. When estimatingwithNONMEM
and simulatingwithmrgsolve, thesematriceswill frequently be imported automatically via
$NMXML or $NMEXT.

8.9.1 Omega / ETA

Diagonal matrix

$OMEGA
0.1 0.2 0.3

This is a 3x3 matrix with 0.1, 0.2, and 0.3 on the diagonal.

Block matrix

$OMEGA @block
0.1 0.002 0.3

This is a 2x2 matrix matrix with 0.1 and 0.3 on the diagonal. Sometimes it’s easier to see
when we code it like this

$OMEGA @block
0.1
0.002 0.3

Random effects simulated from OMEGA are referred to with ETA(n).

8.9.2 Sigma / EPS

Works just like Omega / ETA, but use $SIGMA and EPS(n).

For sigma-like theta, code it just as you would in NONMEM.

$PARAM THETA12 = 0.025

$SIGMA 1

$ERROR
double W = sqrt(THETA12);
Y = (CENT/V) + W*EPS(1);

There is no FIX in mrgsolve; everything in OMEGA and SIGMA is always fixed.
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8.10 Import estimates from NONMEM

• Use $NMEXT or $NMXML

– $NMEXT reads from the .ext file

* Can be faster than $NMXMLwhen the root.xml file gets big

* Doesn’t retain $OMEGA and $SIGMA structure
– $NMXML reads from the .xml file

* Can be slower than $NMEXT

* Does retain $OMEGA and $SIGMA structure

This is the safest way to call

$NMXML
path = "../nonmem/106/106.xml"
root = "cppfile"

You might be able to use this run/project approach as well

$NMXML
run = 1006
project = "../sim/"
root = "cppfile"

This codewill look for 1006/1006.xml under sim, one directory level up from the location
of the mrgsolve “cpp‘ file.

8.11 Models in closed form

mrgsolvewill solve one- and two-compartmentmodelswithfirst order input in closed form.
This usually results in substantial speed up. Use $PKMODEL.

$PKMODEL cmt = "GUT,CENT", depot = TRUE

Certain symbols are required to be defined depending on themodel. mrgsolvemodels are
always parameterized in terms of clearances and volumes except for absorption, which is
in terms of rate constant.

• CL / V
• CL / V / KA
• CL / V2 / Q / V3
• CL / V2 / Q / V3 / KA

These can be defined as a parameter or a derived quantity in $PK.

Compartment names are user-choice; the only thing mrgsolve cares about is the number
of compartments.

47



8.12 Plugins

8.12.1 autodec

Historically, you have had to declare the type of any new variable you want to create.

$PK
double KE = CL/V;

For most models, the numeric variables you declare are likely to be floating point numbers
… with type double.

We created a plugin that tells mrgsolve to look for new variables and declare them for
you.

$PLUGIN autodec

$PK
KE = CL/V;

8.12.2 nm-vars

mrgsolve historically has used

• CENT
• dxdt_CENT
• F_CENT
• D_CENT

etc. When we started mrgsolve, this was a really nice feature because you didn’t have to
think about compartment numbers. However, this made translation of the model more
difficult.

When you invoke the nm-vars plugin, you canwrite in a syntax that ismuchmore like NON-
MEM.

For example

$PK
F2 = THETA(3);

ALAG2 = EXP(THETA(4));

$DES
DADT(1) = - KA * A(1);

Other convenience syntax

• LOG() and log()
• LOG10() and log10()
• EXP() and exp()
• DEXP() and exp()
• SQRT() and sqrt()
• COS() and cos()
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Regardless of whether you have nm-vars invoked or not, you can still use THETA(n) to
refer to parameter THETAn.

Try the nm-likemodel in the model library for an example.

mod <- modlib("nm-like")

mod@code

8.12.3 Rcpp (random numbers)

This gives you functions and data structures that you’re used to using in R, but they work
in c++.

The main use for this is random number generation. Any d/q/p/r function in R will be avail-
able; arguments are the same, but omit n (you always get just one draw when calling from
c++).

For a draw from U(0,1)

$PLUGIN Rcpp

$ERROR
double u = R::runif(0, 1);

Note: the model compilation time will slightly increase any time you invoke the Rcpp re-
sources. It’s still tolerable, but I just wouldn’t include Rcpp if you don’t have to.

8.13 Other blocks

• Use $SET to configure the model object on load

– For example, set the simulation end time

• Use $ENV to define a set of R objects that might be evaluated in other model blocks
• Use $PRED for other user-written closed form models
• Use $PREAMBLE for code that gets run once at the start of a problem NEWIND==0
• Use $GLOBAL to define variables outside of any other block

8.14 Variables and macros

There is too much syntax to mention it all here. You will find all the syntax here

https://mrgsolve.org/user-guide/

8.15 Modeled event times

To get the model to stop at any time (even if not in the data set) with EVID 2

double mt1 = self.mtime(1.23 + ETA(1));

To get the model to stop at any time with user-specified EVID (e.g. 33)
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self.mevent(1.23 + ETA(1), 33);
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